Gas flow behaviour in longwall goafs

Need for understanding of gas flow behaviour in longwall goafs

- Gas control
 - Development of effective goaf gas control techniques high gas
 - Optimisation of gas control methods and LW ventilation
- Spontaneous combustion control in working LW goaf
- Prevention of heatings in sealed goafs
- Optimisation of inertisation operations
- Longer and wider LW panels
- Difficult geomechanical conditions
- Gas migration

Technologies – Goaf gas flow characterisation

- **Goaf gas distribution monitoring** -with LW retreat
- Ventilation studies
- Face gas patterns
- Tracer gas studies
- Longwall geomechanics
- **CFD** (Computational Fluid Dynamics) modelling
 - Goaf gas flow modelling
 - Extensive parametric studies

Field studies -with various gas drainage designs/ systems

Goaf gas monitoring

- **Continuous monitoring**
 - Tube bundle system
 - □ > 10 tubes used for one LW panel goaf
- Gas monitoring on both sides & middle of the goaf
- Tubes shifted with face retreat
- Additional weekly monitoring of all seals
- Ventilation system monitoring
- Effect of changes in mining parameters on goaf gas patterns

Goaf gas monitoring - Plan

Goaf gas distribution

Gas concentration behind the face - on intake side

Goaf gas distribution

Gas conc. behind the face - at 60 m from return side gateroad

Goaf gas distribution - Outcomes

- O₂ concentration in goaf on intake side
 - 10 15 % even at 100 m behind the face depending on goaf condition
 - depends on intake air quantity/ velocity
- O₂ concentration in goaf on return side
 - 8 12% at 150 m behind the face two cut-throughs open
 - **2 4 % when only one cut-through is open for back return**
- Curtain between last chock and rib good to reduce O₂ ingress
 Only one cut-through should be open for back-return

Face gas profiles

Face gas levels with LW retreat - TG, mid-face, MG

Face gas distribution

Figure 4.4.2 Longwall face CO2 gas survey results on night shift

Face gas profiles - Outcomes

Face gas profiles depends on
 ventilation system, caving characteristics, ...

Face gas level increases linearly

- near start-up area + near strong roof/ flat areas

Face gas level reaches max. at 1/3rd from intake

- at this mine -in normal conditions
- **indicates goaf gas coming back onto face at 1/3rd dist.**
- goaf caving close to face within 20 30 m behind face

- **Tracer gas studies -** Gas flow patterns
- SF₆ and He gases were used as tracer gases
- Tracer gas released
 - in the intake of LW
 - in the goaf
- Samples collected from the goaf (& old goaf)- various locations
- **Gas sample analysis detection limit 1 ppb**
- 8 tests were conducted successfully in various mines

Tracer gas studies - Plan

Variations in goaf gas flow patterns

(a) Assumption - simplistic

(b)Flow paths – typical – mine A (c) Flow paths near dykes

Tracer gas studies - Results

- SF₆ reliable tracer gas detected at all sampling locations
 He detected at only few locations + interpretation difficult due to background levels present in coal mines
- Detection times varied from 2 minutes to 10 hours
 - gas detected even at 1,000 m behind the face in 10 hours
- Goaf gas flow velocities at various locations calculated
 - varied from 0.02 m/s to 0.5 m/s
 - used for calibration of CFD models

CFD modelling studies

- Longwall goaf gas flow model development
- Calibration and fine-tuning using field data
- Parametric studies
 - effect of ventilation parameters, system, Quantity, ..
 - effect of mining parameters cut-throughs,
 - **gas emission patterns, gas drainage flow strategy,**

Design of gas control techniques/ strategies

optimisation

CFD modelling - Model development

Longwall goaf gas flow model

- **3D** model with > 100,000 cells
- **Sun workstation with 2MB RAM**
- block model to continuous model
- sub-routines developed
- Flow modelling
 - turbulent near face
 - laminar in goaf
- Multi-gas components
 - \Box CH₄, CO₂, O₂, N₂, ...

CFD modelling - Results

Gas flow patterns and distribution in LW goaf in 3D

- oxygen penetration
 - -more on intake side varies
- **gas layering buoyancy effect**

CFD modelling - Typical parametric study

Effect of number of cut-through's open behind face

(a) 1 c/t open

(b) 2 c/t's open

CFD modelling - Typical parametric study

Effect of "CAN" supports in TG intake

(a) base model

(b) high permeability in TG

CFD modelling - Typical parametric study

Effect of "Dykes" in the goaf

(a) Dyke at 200 m behind

(b) Dyke at 300 m behind

(c) Dyke at 300 m behind + CAN's in TG

CFD modelling - Goaf hole design

Goaf hole location investigations

O2 distribution - start-up area

Effect of goaf holes on goaf gas distribution

CFD modelling studies - Outcomes

Goaf gas flow patterns characterised including buoyancy effect Showed effect of changes in mining parameters -on goaf gas flow distribution strategies for goaf drainage strategies for spontaneous combustion control **Goaf hole design** indicated optimum values 40 to 50 m from gateroad

Surface goaf holes effectiveness

 Studies involved - reducing and increasing gas drainage flow (incl. stopping) + measuring gas flow variation in LW return

Surface goaf hole tests - Results

- Surface goaf hole drainage stopped for testing
- LW gas levels started increasing immediately
 - response time 5 min. to 2 hr to > day -to reach peak levels
 - > depends on caving characteristic, bed separation, hole location, ..
 - > 80 to 90 % of gas plant gas migrated to LW return for goaf hole at 100 to 200 m - within 30 min. to 3 hours
 - \sim > 60 to 80 % when goaf hole located at > 600 m.

Goaf holes drainage reduces LW gas levels

not just extra gas drainage

Gas Control – developments

- changes implemented in gas drainage system using knowledge obtained from all the above studies
- Goaf hole casing slotted section reduced
- Goaf plants capacity increased
- Less number of goaf holes near the finish line (Total reduced)
- Cut-through's behind face to be closed as soon as possible
- **Goaf holes drainage continuous as long as possible**
- Goaf holes away 80 to 100 m away from faults/dykes

Sponcom control - developments

- Sponcomb rate high near geological disturbances faults
- CO production depends on ventilation, permeability, ..
- Oxygen in goaf holes to be less than $4\% O_2$ preferably
- Cut-through's behind the face to be closed as soon as possible
- Reduced intake airflow (+ less pressure differentials)
- Goaf holes away from faults/dykes
- **Continuous monitoring of CO + O₂ behind (200 m) the face**

Project outcomes

- Fundamental understanding of goaf gas flow mechanics
 - + effect of various mining parameters (c/t's, Qty, ..)
 - O₂ ingress at different conditions (+ explosive fringe location)
- Goaf gas layering in mixed gas scenario buoyancy..
- Goaf gas drainage technology improvement
 - □ for CO₂ gas + very high capacity (compared with other installations)
 - **goaf drainage in sponcom environment** (high capacity drainage)
- Tracer gas testing for goaf gas flow characterisation
 - □ Flow paths, times, velocities, .. + gas migration between panels

Project outcomes

CFD modelling - successful application

- **for investigating the effect of various parameters on gas flow**
- for development/ optimisation of gas control strategies

Effect of geomechanics on goaf drainage – caving, bed separation

- effect on gas flow patterns, face gas profiles, goaf holes, ...
- Effect of small geological features on gas flow + sponcom
- **Effect of mining parameters** c/t's location, spacing, CAN's
- Spontaneous combustion control strategies
- **Capability to deal with mine emergencies (Fires,.)**
 - Optimisation of inertisation operations
- Capability to deal with other mine scenarios

Project outcomes

- **Goaf gas drainage performance tripled**
- Major reductions in air dilution ratio
- Spontaneous combustion risk reduced less O₂ in holes
- Improved understanding of operational parameters
- Improvement in mine/LW productivity
- Major reduction in mine gas drainage cost
- **Focus shifting from pre-drainage to post-drainage**
- Demonstration of high capacity goaf drainage in a spontaneous combustion prone mine